
Modeling of linear dynamical systems using open tools

Zoltán Magyar, Tomáš Starý, Ladislav Szolik, Ľudovít Vörös, Katarína Žáková
Faculty of Electrical Engineering and Information Technology

Slovak University of Technology
Ilkovičova 3, 812 19 Bratislava, Slovakia

katarina.zakova@stuba.sk

Abstract

The aim of the article is to present a new possible way
of an online interactive teaching. The effort is to
substitute proprietary software that is commonly used in
educational process by open technologies. Since the
subject of this article is oriented to the automation area
we devoted our attention to open software such as SciLab,
OpenModelica and Maxima. Moreover, these tools can be
available not only locally on the desktop computer or the
notebook but also online via Internet. In the paper we
also introduce examples of the open tools implementation.

1. Introduction

The Control Theory is one of the fundamental subjects
that are taught at universities of technical orientation. At
the Faculty of Electrical Engineering and Information
Technology (Slovak University of Technology) in
Bratislava it is placed into the second year of the study.
For the control design it is really important to find the
exact possible mathematical model of a system.
Mathematical models can be described by different forms.
Depending on the particular system and the particular
circumstances, one mathematical model can be better than
another one. For example, in optimal control problems, it
is advantageous to use state-space representations. On the
other hand, for the transient response or frequency
response analysis of single input single output, linear,
time-invariant systems, the transfer function
representation may be more convenient than any other
[7]. Another possibility is to use the differential equation
description. Once a mathematical model of a system is
obtained, various analytical and computer tools can be
used for analysis and synthesis purposes.

2. Open technologies

In the last decade the development of the low cost
software (free and open source software) takes
increasingly bigger and bigger importance. It brings
competition to the proprietary software products including
open source platforms. Open standards are also supported
by European Union that would like to create conditions

for the market development and to avoid the constraints
given in the case when the only exclusive producer
creates software for certain area. The direction was also
supported by the speech of European commissioner
Neelie Kroes with title “Being open about standards”
from June 10, 2008 where she recommends to use the
software based on open standards. This recommendation
was headed to governments of all European countries.
This paper also tries to follow this tendency and therefore
it is oriented to open technologies that can be used for the
topic that is included in the basic Control Theory subject
– Modeling of linear dynamical systems.

3. Open tools implementation

In this section we devote our attention to the selected
open tools that can be used as keystones at the building of
virtual laboratory in the area of automation, cybernetics,
mechatronics or industrial informatics.

 Maxima

Maxima is the software environment that enables to
accomplish various mathematical operations including
symbolic calculations. In this way it can be an alternative
for such programs as Maple or Mathematica are.
To include it to our virtual laboratory it was necessary to
build an interface that would enable to approach the
program kernel. Actually, we decided to implement two
interfaces:

1. graphical user interface that offers users to use
all Maxima functions via the command line
available on the web page (Fig.3).

2. program interface that enables to exploit the
Maxima functionality in other web applications.

Graphical user interface
The graphical user interface is supported by other
complementary technologies such as JQuery, JSMath and
Yetii.
Users can use the application of Maxima installed on the
server by typing in Maxima commands into the command
line/area displayed on the webpage. After submitting the
form browser sends the commands to the server side PHP
script (web-interface.php). This script validates the data

and forwards them to another PHP script (php-
MAXIMA.php), that is able to send data to Maxima.
Before sending it decides whether the data represent the
graph plotting command or a single equation command. If
the command is the graph plotting command it generates
the filename for the image file which is going to carry the
image of the plotted graph. After that decision the script
creates the shell command string containing Maxima
commands and executes it via shell_exec() PHP function.
The system shell on the server gets the command and
executes it by starting the installed version of Maxima
(Fig.1).

Fig.1. Schematic block scheme of Maxima online
implementation

Maxima gets the batch string and executes it. If the batch
string contains graph plotting commands it generates the
necessary output and call GNUPLOT (for 2D and 3D
plotting) or IMAGEMAGICK (for fractal plotting)
applications to generate PNG image file from Maxima
output with the already generated filename. After that
Maxima sends its output as the text string back to the
shell and the shell forwards it to the PHP script (php-
MAXIMA.php).
The PHP script receives the data as the string from the
shell_exec() function. The script has to remove all
unnecessary characters and then the user input and the
Maxima output are formatted into the TeX format and
sent to other PHP script (web-interface.php) which
generates the web page with the Maxima output.
Since the user can specify two formats of the displayed

mathematical results (JSMath or PNG images) the
web-interface.php script has to distinguish between both
outputs. If the mathematical results should be displayed
by JSMath tool the output is generated with the TeX
representation of received strings and JSMath will take
care about all the remaining job. Otherwise the PNG
images of results are generated using MATHTEX and
DVIPNG tools. Then, all results are displayed in the user
web browser. The detailed block scheme of the Maxima
online implementation is shown in Fig. 2. The described
graphical user interface is illustrated in Fig. 3.

Fig.3. Command line (area) for Maxima commands

Fig.2. The detailed block scheme of the Maxima implementation on the server

Program interface
The program interface uses the same steps as they were
described above except of the user interaction via web
page. The mathematical tasks for Maxima solving are
indicated not by the user but by other web application.
Similarly, the results from Maxima are sent not to the user
but they are sent back to the application that created the
operation request. Actually, the user doesn't need to know
about the existence of Maxima environment on the server
since it is used only for mathematical computations. The
program interface includes the created methods that
enable interaction between Maxima and a new web
application. The example of such application is shown in
Fig. 4. It enables to transform one form of the dynamical
system description to the other one.

Fig.4. Front-end of the application for model description
conversion

 OpenModelica

OpenModelica enables to model and simulate the
behavior of the dynamical systems. In this way it is
similar to Maple or Matlab.
The basic block scheme of its implementation on the
server is shown in Fig.5.

Fig.5. Schematic block scheme of OpenModelica online
implementation

The communication with the server is provided via the
web browser form where the user enters all necessary
parameters that are sent to the OpenModelica engine
installed on the server. The same web page can be also
used for the result visualization (see Fig.7).
After sending data to the server, they have to be
transformed to the form that can be understood by
OpenModelica. Therefore the data are transformed to the
string representation. For this purpose we used the Python
programming language.

The Python script language was chosen because of its
ability to cooperate with CORBA interface that can be
used for communication with OpenModelica
environment. We can run OpenModelica in interactive
corba mode. This mode generates an Interoperable Object
Reference (IOR) number as the reference to CORBA.
After OpenModelica receives strings generated by
Python, it executes included commands and sends the
result back to Python.
In the case of simulation (the model has to be pre-defined
on the server) OpenModelica sends back only report
about the successful simulation. The simulation data are
written to the external file. Running the simulation, there
is no difference between running it in the local and the
interactive mode, since in the case of the local mode the
data are also stored in an external file.

Fig.6. The detailed block scheme of the OpenModelica
implementation on the server

At the simulation the Python script must also perform
other tasks:

• to open the file with the simulation results. The
filename and its location have to be defined in
the configuration file.

• to load values from the external file. The file can
contain unnecessary data that have to be filtered
out by the Python script.

• to render graphics objects. The results are
presented to user in the form of the graph and/or
animation.

After the results are visualized on the web page the
communication between the server and the client side is
concluded. Later, the client can send new data that the
server has to process again.
The detailed communication among all components of
this client/server service is described in Fig.6.

In Fig.7 one can find the application with the magnetic
levitation experiment. The task is to control the position
of the ball between two coils. The control is ensured by
means of PID controller.

Fig.7. Front-end of the magnetic levitation experiment

 SciLab

SciLab also belongs to the software that enables to
simulate dynamical systems. In its nature it reminds
Matlab mainly because of its graphical interface Scicos
that is very similar to Simulink.
The principle of the communication between the
application SciLab and the server web application (Fig.8)
is quite simple. It is based on the method of TCP
communication. SciLab contains a package named TCP
Socket Toolbox, which allows connecting on a listening
TCP socket and to send and receive data via this socket.
The only disadvantage of this toolbox is that it doesn’t
allow creating a listening socket. It only allows to connect
to a socket that already has the status of “listening”.
However, this fact doesn’t introduce any problem,
because the most of the server side scripting languages,
like PHP, supports packages, toolboxes or extensions
allowing a developer to gain full control (including
creation and destruction) of TCP connections.

Fig.8. Schematic block scheme of SciLab online implementation

The whole communication runs in such a way that the
user enters the input parameters to the form on the
webpage. Then he or she submits parameters to the
server, i.e. the request for processing is accomplished.
The PHP script client.php formats the input of the user

into SciLab instructions and sends it via session variable
to the script server.php. The main task of this script is to
create, maintain and close the communication with
SciLab. The script server.php sends the requested
instructions as a string to SciLab. Finally, the script
SciLab.sce executes the received instructions and sends
back the result also in a string form. The script client.php
handles the result and sends the generated webpage with
the requested information to the web browser of the end
user.

Fig.9. The detailed block scheme of the SciLab implementation
on the server

The Fig.10 illustrates the next example that was
considered for modeling and simulation. It is a two tank
system where it is necessary to control the level of liquid
in the first or the second tank. The back-end of the
application was realised using the SciLab environment.

Fig.10. Front-end of the two tank system experiment

4. Server

All introduced applications run on Linux server. Of
course, all of them can be executed by various access
rights allocated to anonymous user, student, teacher and
administrator as well. However, all these application
enable to access in more or less visible ways certain

commands that can damage the application or even server
installation (e.g. hard disk formatting).
Since the whole application runs on Linux server, we can
predict, that this system is able to provide the requested
stability and security to keep usernames and passwords
safe and is more avoidable against virus, malware,
spyware and trojan attacks. However, it is also necessary
to ensure the protection of applications against the already
mentioned „self-destruction“ (mostly done by a user). It
can be done by several ways. We used the Jailkit that
enables to lock the folder that is used by the application.
Then, it is impossible to reach any of crucial files or
folders of the Linux system and it also is impossible to
delete any of files that after login to the system belongs to
some other user.

5. Conclusions

The paper presented an alternative way to the building of
virtual laboratories. Our effort is to use the presented tools
in two ways:

• to offer interested users (mainly students) the
command line access to the presented software
in order they could use the software online
without the necessity of the installation on their
own computer.

• to enable to use the engine of the mentioned
software in frame of other web applications to
facilitate their functionality and design.

We hope that we will be in our direction successful.

6. Acknowledgments

The work has been partially supported by Slovak Grant
Agency, Grant KEGA No. 3/7245/09 and Grant VEGA
No. 1/0656/09. This support is very gratefully
acknowledged.
Authors would also like to thank to David Gyuras for his
help with Maxima interfaces.

7. References

[1] A. Beshenov, Maxima beginners FAQ,
http://cadadr.org/maxima/faq.html

[2] D. Gyurasz, Symbolické výpočty na Internete, Diploma
thesis, FEI STU Bratislava, 2009 (in Slovak).

[3] S. Holzner, Mistrovství v AJAXu, Computer Press. Brno,
2007.

[4] M. Huba, P. Bisták, M. Fikar, M. Kamenský, ”Blended
Learning Course "Constrained PID Control"”, 7th IFAC
Symposium on Advances in Control Education ACE’06, Madrid,
Spain, 2006.

[5] P. Lutus, Symbolic Mathematics Using Maxima,
http://arachnoid.com/maxima/

[6] R. Nikoukhah, Scicos presentation, http://www.scicos.org

[7] K. Ogata, Modern Control Engineering, 3rd Edition,
Prentice Hall London, 1997.

[8] OmniORBpy documentation,
http://omniorb.sourceforge.net/docs.html

[9] A. Pop, P. Frizon, OpenModelica Users Guide,
http://www.ida.liu.se/~pelab/modelica/OpenModelica

[10] A. Pop, P. Frizon, OpenModelica.
http://www.ida.liu.se/~pelab/modelica/OpenModelica

[11] Python documentation, http://www.python.org/doc/

[12] The PHP Group. 2001-2009. PHP Documentation.
http://www.php.net/docs.php

[13] R. H. Rand, Introduction to Maxima,
http://maxima.sourceforge.net/docs/intromax/intromax.html

[14] J. Resig and the jQuery Team. 2009. jQuery
Documentation. http://docs.jquery.com

[15] T. Reveyrand, The SOCKET Toolbox for Scilab,
http://www.reveyrand.fr/

[16] F. Schauer, M. Ožvoldová, F. Lustig, „Real Remote
Physics Experiments across Internet – Inherent Part of
Integrated E-Learning” , Int. Journal of Online Engineering
(iJOE), 4, No 2, 2008.

[17] Chr. Schmid, „Internet - basiertes Lernen“,
Automatisierungstechnik, 51, No. 11, p. 485-493, 2003.

[18] Scilab consortium. Scilab, http://www.scilab.org/

[19] M. Šimunek, P., Bisták, M. Huba, „Virtual Laboratory for
Control of Real Systems”, Conference Proceedings ICETA,
Košice, Slovakia, 2005.

[20] A. J. Turgeon, "Implications of Web-Based Technology for
Engaging Students in a Learning Society", Journal of Public
Service and Outreach 2(2): 32-37.

[21] E. L. Woollett, Maxima by example,
http://www.csulb.edu/~woollett/

[22] K. Žáková, M. Janotík, "Mathematical Modeling of
Dynamic Systems: an interactive online lesson", 5th
international conference “Virtual University”, Bratislava,
December, 2004.

[23] K. Žáková, " Control Theory - an interactive online
course", 6th international conference “Virtual University”,
Bratislava, December, 2005.

[24] K. Žáková, M. Sedlák, “Remote Control of Experiments
via Matlab”, Int. Journal of Online Engineering (iJOE), 2, No.
3, 2006.

	Modeling of linear dynamical systems using open tools
	Introduction
	Open technologies
	Open tools implementation
	Server
	Conclusions
	Acknowledgments
	References

